博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Android Initialization Process
阅读量:4138 次
发布时间:2019-05-25

本文共 6566 字,大约阅读时间需要 21 分钟。

转自

 

init is the first process after kernel started. The corresponding source code lies in: device/system/init. It does the following tasks step by step:

1.       Initialize log system.

2.       Parse /init.rc and /init.%hardware%.rc.

3.       Execute early-init action in the two files parsed in step 2.

4.       Device specific initialize. For example, make all device node in /dev and download firmwares.

5.       Initialize property system. Actually the property system is working as a share memory. Logically it looks like a registry under Windows system.

6.       Execute init action in the two files parsed in step 2.

7.       Start property service.

8.       Execute early-boot and boot actions in the two files parsed in step 2.

9.       Execute property action in the two files parsed in step 2.

10.   Enter into an indefinite loop to wait for device/property set/child process exit events. For example, if an SD card is plugined, init will receive a device add event, so it can make node for the device. Most of the important process is forked in init, so if any of them crashed, init will receive a SIGCHLD then translate it into a child process exit event, so in the loop init can handle the process exit event and execute the commands defined in *.rc(it will run command onrestart).

The .rc file is a script file defined by Android. The default is device/system/rootdir/init.rc. We can take a loot at the file format(device/system/init/readme.txt is a good overall introduction of the script). Basically the script file contains actions and services.

Actions

-------

Actions are named sequences of commands. Actions have a trigger which is used to determine when the action should occur.  When an event occurs which matches an action's trigger, that action is added to the tail of a to-be-executed queue (unless it is already on the queue).

Each action in the queue is dequeued in sequence and each command in that action is executed in sequence.  Init handles other activities (device creation/destruction, property setting, process restarting) "between" the execution of the commands in activities.

Actions take the form of:

on <trigger>

   <command>

   <command>

   <command>

...

Services

--------

Services are programs which init launches and (optionally) restarts when they exit.  Services take the form of:

service <name> <pathname> [ <argument> ]*

   <option>

   <option>

   ...

Options

-------

Options are modifiers to services.  They affect how and when init runs the service.

Triggers

--------

Triggers are strings which can be used to match certain kinds of events and used to cause an action to occur.

The builtin supported commands are defined in device/system/init/keywords.h. Commands are implementd in device/system/init/bultins.c.

The init program only executes five kinds of triggers: “early-init”, “init”, “early-boot”, “boot”, “property:*”. Take a look at the following line in default init.rc.

class_start default

This line is a command for the action corresponding to “boot” trigger. It will start all services whose class name equals to “default”. By default, if no class option is defined for a service, the service’s class name is “default”. So this line will start all the services in the order of position in the file by default. (BTW, you can start any service using start commands, if you like.) Any service is run as a forked process of init, take a look at the source code of service_start in device/system/init.c.

So according to the default init.rc, the following services will be executed step by step:

console: star a shell. The source is in device/system/bin/ash.

adbd: start adb daemon. The source is in device/tools/adbd. By default is disabled.

servicemanager: start binder system. The source is in device/commands/binder.

mountd: mount all fs defined in /system/etc/mountd.conf if started, receive commands through local socket to mount any fs. The source is in device/system/bin/mountd.

debuggerd: start debug system. The source is in device/system/bin/debuggerd.

rild: start radio interface layer daemon. The source is in device/commands/rind.

zygote: start Android Java Runtime and start system server. It’s the most important service. The source is in device/servers/app.

media: start AudioFlinger, MediaPlayerService and CameraService. The source is in device/commands/mediaserver.

bootsound: play the default boot sound /system/media/audio/ui/boot.mp3. The source is in device/commands/playmp3.

dbus: start dbus daemon, it’s only used by BlueZ. The source is in device/system/Bluetooth/dbus-daemon.

hcid: redirect hcid’s stdout and stderr to the Android logging system. The source is in device/system/bin/logwrapper. By default is disabled.

hfag: start Bluetooth handsfree audio gateway, it’s only used by BlueZ. The source is in device/system/Bluetooth/bluez-utils. By default is disabled.

hsag: start Bluetooth headset audio gateway, it’s only used by BlueZ. The source is in device/system/Bluetooth/bluez-utils. By default is disabled.

installd: start install package daemon. The source is in device/servers/installd.

flash_recovery: load /system/recovery.img. The source is in device/commands/recovery/mtdutils.

Zygote service does the following tasks step by step:

1.       Create JAVA VM.

2.       Register android native function for JAVA VM.

3.       Call the main function in the JAVA class named com.android.internal.os.ZygoteInit whose source is device/java/android/com/android/internal/os/ZygoteInit.java.

a)         Load ZygoteInit class

b)        Register zygote socket

c)        Load preload classes(the default file is device/java/android/preloaded-classes)

d)        Load preload resources

e)         Call Zygote::forkSystemServer (implemented in device/dalvik/vm/InternalNative.c) to fork a new process. In the new process, call the main function in the JAVA class named com.android.server.SystemServer, whose source is in device/java/services/com/android/server.

                         i.              Load libandroid_servers.so

                       ii.              Call JNI native init1 function implemented in device/libs/android_servers/com_android_server_SystemServers. It only calls system_init implemented in device/servers/system/library/system_init.cpp.

l         If running on simulator, instantiate AudioFlinger, MediaPlayerService and CameraService here.

l         Call init2 function in JAVA class named com.android.server.SystemServer, whose source is in device/java/services/com/android/server. This function is very critical for Android because it start all of Android JAVA services.

l         If not running on simulator, call IPCThreadState::self()->joinThreadPool() to enter into service dispatcher.

SystemServer::init2 will start a new thread to start all JAVA services as follows:

Core Services:

转载地址:http://xmmvi.baihongyu.com/

你可能感兴趣的文章
java多线程环境单例模式实现详解
查看>>
将一个数插入到有序的数列中,插入后的数列仍然有序
查看>>
在有序的数列中查找某数,若该数在此数列中,则输出它所在的位置,否则输出no found
查看>>
万年历
查看>>
作为码农你希望面试官当场指出你错误么?有面试官这样遭到投诉!
查看>>
好多程序员都认为写ppt是很虚的技能,可事实真的是这样么?
查看>>
如果按照代码行数发薪水会怎样?码农:我能刷到公司破产!
查看>>
程序员失误造成服务停用3小时,只得到半月辞退补偿,发帖喊冤
查看>>
码农:很多人称我“技术”,感觉这是不尊重!纠正无果后果断辞职
查看>>
php程序员看过来,这老外是在吐糟你吗?看看你中了几点!
查看>>
为什么说程序员是“培训班出来的”就是鄙视呢?
查看>>
码农吐糟同事:写代码低调点不行么?空格回车键与你有仇吗?
查看>>
阿里p8程序员四年提交6000次代码的确有功,但一次错误让人唏嘘!
查看>>
一道技术问题引起的遐想,最后得出结论技术的本质是多么的朴实!
查看>>
985硕士:非科班自学编程感觉还不如培训班出来的,硕士白读了?
查看>>
你准备写代码到多少岁?程序员们是这么回答的!
查看>>
码农:和产品对一天需求,产品经理的需求是对完了,可我代码呢?
查看>>
程序员过年回家该怎么给亲戚朋友解释自己的职业?
查看>>
技术架构师的日常工作是什么?网友:搭框架,写公共方法?
查看>>
第四章 微信飞机大战
查看>>